arviz.from_numpyro#
- arviz.from_numpyro(posterior=None, *, prior=None, posterior_predictive=None, predictions=None, constant_data=None, predictions_constant_data=None, log_likelihood=None, index_origin=None, coords=None, dims=None, pred_dims=None, extra_event_dims=None, num_chains=1)[source]#
Convert NumPyro data into an InferenceData object.
If no dims are provided, this will infer batch dim names from NumPyro model plates. For event dim names, such as with the ZeroSumNormal,
infer={"event_dims":dim_names}
can be provided in numpyro.sample, i.e.:# equivalent to dims entry, {"gamma": ["groups"]} gamma = numpyro.sample( "gamma", dist.ZeroSumNormal(1, event_shape=(n_groups,)), infer={"event_dims":["groups"]} )
There is also an additional
extra_event_dims
input to cover any edge cases, for instance deterministic sites with event dims (which dont have aninfer
argument to provide metadata).For a usage example read the Creating InferenceData section on from_numpyro
- Parameters:
- posterior
numpyro.mcmc.MCMC
Fitted MCMC object from NumPyro
- prior: dict
Prior samples from a NumPyro model
- posterior_predictive
dict
Posterior predictive samples for the posterior
- predictions: dict
Out of sample predictions
- constant_data: dict
Dictionary containing constant data variables mapped to their values.
- predictions_constant_data: dict
Constant data used for out-of-sample predictions.
- index_origin
int
, optional - coords
dict
[str
] ->list
[str
] Map of dimensions to coordinates
- dims
dict
[str
] ->list
[str
] Map variable names to their coordinates. Will be inferred if they are not provided.
- pred_dims: dict
Dims for predictions data. Map variable names to their coordinates. Default behavior is to infer dims if this is not provided
- num_chains: int
Number of chains used for sampling. Ignored if posterior is present.
- posterior